
Problem A
XOR Pairs

XOR is a bitwise operator that evaluates the resulting bit into 1 if and only if their corresponding input bits
differ (one of them is 1 while the other is 0). XOR operator is usually written with a symbol ⊕, or in most
programming languages, the character ^(caret). For example, (10⊕ 6) = 12.

10 => 1010

6 => 0110

----- ⊕
1100 => 12

In this problem, you are given an integerN and a set of integers S1..M . Your task is to count how many pairs
of integers 〈A,B〉 such that 1 ≤ A,B ≤ (A⊕B) ≤ N , and (A⊕B) /∈ S.

For example, let N = 10 and S1..4 = {4, 6, 7, 10}. There are 6 pairs of 〈A,B〉 that satisfy the condition.

• 〈1, 2〉 → (1⊕ 2) = 3

• 〈1, 4〉 → (1⊕ 4) = 5

• 〈1, 8〉 → (1⊕ 8) = 9

• 〈2, 1〉 → (2⊕ 1) = 3

• 〈4, 1〉 → (4⊕ 1) = 5

• 〈8, 1〉 → (8⊕ 1) = 9

Observe that a pair such as 〈2, 4〉 does not satisfy the condition for this example as (2 ⊕ 4) = 6 but 6 ∈ S.
Another pair such as 〈5, 1〉 also does not satisfy the condition as it violates the requirement A,B ≤ (A⊕B).

Input

Input begins with a line containing two integersN M (1 ≤ N ≤ 106; 1 ≤M ≤ 100 000) representing the given
N and the size of the set of integers S1..M . The next line containsM integers Si (1 ≤ Si ≤ 106) representing
the set of integers S1..M .

Output

Output contains an integer in a line representing the number of 〈A,B〉 such that 1 ≤ A,B ≤ (A ⊕ B) ≤ N

and (A⊕B) /∈ S1..M .

Sample Input #1

10 4

4 6 7 10

The 2021 ICPC Asia Jakarta Regional Contest Problem A. XOR Pairs

Sample Output #1

6

Explanation for the sample input/output #1

This is the example from the problem description.

Sample Input #2

8 5

4 3 5 8 1

Sample Output #2

10

Explanation for the sample input/output #2

There are 10 pairs of 〈A,B〉 that satisfy the condition.

• 〈1, 6〉 → (1⊕ 6) = 7

• 〈2, 4〉 → (2⊕ 4) = 6

• 〈2, 5〉 → (2⊕ 5) = 7

• 〈3, 4〉 → (3⊕ 4) = 7

• 〈3, 5〉 → (3⊕ 5) = 6

• 〈4, 2〉 → (4⊕ 2) = 6

• 〈4, 3〉 → (4⊕ 3) = 7

• 〈5, 2〉 → (5⊕ 2) = 7

• 〈5, 3〉 → (5⊕ 3) = 6

• 〈6, 1〉 → (6⊕ 1) = 7

Sample Input #3

20 7

3 7 18 15 12 18 19

Sample Output #3

50

Sample Input #4

5 6

1 2 3 4 5 6

Sample Output #4

0

The 2021 ICPC Asia Jakarta Regional Contest Problem A. XOR Pairs

Problem B
Bicycle Tour

There are N junctions in Jakarta (numbered from 1 to N) that are connected by M bidirectional roads such
that from any junction you can reach any other junctions by going through one or more roads. The ith junction
has a height of Hi.

Ahmad loves to cycle, especially on flat roads. He argues that you need more power to cycle if the road
is uphill or downhill. Specifically, to cycle on a road connecting junction i and junction j, you will require a
power of |Hi − Hj |. The required power to cycle a set of roads is equal to the highest required power to
cycle each of those roads. For example, let there be 3 roads where each requires a power of 10, 12, and 7

to cycle, then the required power to cycle through all those roads is max(10, 12, 7) = 12.

A cycling route from junction i is defined as a tour that starts at junction i, going to one or more other junctions
while not using the same road more than once, and ends at the same junction i.

Ahmad would like to find a cycling route from each junction that has a minimum required power, and that is
your task in this problem. For each junction, you need to output the required power of a cycling route from
that junction that has the minimum required power. There might be a case where a cycling route from a
junction is not possible; in such a case, the output should be −1 for the respective junction.

For example, let N = 8, H1..8 = {5, 2, 7, 0, 10, 6, 6, 6}, M = 11, and the roads be shown in the following
figure. The label on each node indicates the junction number while the number on each edge indicates the
required power to cycle through that road. Notice that the required power to cycle through each road can be
obtained from the given H1..8.

7

68 1

2

3

4

5

3

2

5

2

8

31

0

0

0

4

The following are the cycling routes with the minimum required power from each junction:

• Junction 1: 1→ 2→ 7→ 6→ 1, with a required power of 4.

• Junction 2: 2→ 1→ 6→ 7→ 2, with a required power of 4.

• Junction 3: 3→ 2→ 1→ 3, with a required power of 5.

• There is no possible cycling route from junction 4.

• Junction 5: 5→ 3→ 1→ 2→ 5, with a required power of 8.

• Junction 6: 6→ 7→ 8→ 6, with a required power of 0.

The 2021 ICPC Asia Jakarta Regional Contest Problem B. Bicycle Tour

• Junction 7: 7→ 8→ 6→ 7, with a required power of 0.

• Junction 8: 8→ 6→ 7→ 8, with a required power of 0.

Input

Input begins with a line containing two integers N M (2 ≤ N ≤ 100 000; N − 1 ≤M ≤ 200 000) representing
the number of junctions and the number of bidirectional roads, respectively. The second line contains N

integers Hi (0 ≤ Hi ≤ 109) representing the height of the ith junction. The next M lines, each contains
two integers ui vi (1 ≤ ui < vi ≤ N) representing a bidirectional road connecting junction ui and vi. It is
guaranteed that from any junction you can reach any other junctions by going through one or more roads.
It is also guaranteed that for any pairs of junctions (u, v), there is at most one bidirectional road connecting
junction u and junction v.

Output

Output contains N integers in a line each separated by a single space. The ith integer represents the
required power of a cycling route from junction i with the minimum required power. If there is no possible
cycling route from junction i, then the ith integer is −1.

Sample Input #1

8 11

5 2 7 0 10 6 6 6

1 2

1 3

2 3

2 4

2 5

2 7

3 5

1 6

6 7

6 8

7 8

Sample Output #1

4 4 5 -1 8 0 0 0

Explanation for the sample input/output #1

This is the example from the problem description.

Sample Input #2

4 5

10 20 30 40

1 2

1 3

1 4

2 3

3 4

Sample Output #2

20 20 20 30

Sample Input #3

5 4

72 35 22 49 108

1 2

2 3

3 4

4 5

Sample Output #3

-1 -1 -1 -1 -1

The 2021 ICPC Asia Jakarta Regional Contest Problem B. Bicycle Tour

Problem C
Energy Generation

You are given a particle collision energy generator. The generator is a two-dimensional field with N towers.
The ith tower is located at position (Xi, Yi), and all towers have the same field of effect with a radius of R.

Each tower radiates 4 types of particles at a fixed configuration. Specifically, each tower radiates each
particle A, B, C, and D on its own quadrant (area separated by both its x-axis and y-axis) in a clockwise
order, respectively. The tower does not radiate any particle at its x-axis or y-axis.

Initially, each tower is oriented at a multiple of 90◦ angle. Let (· , · , · , ·)
represents the particles radiated by a tower on its upper right, lower right,
lower left, and upper left quadrant, respectively.

• If the tower is oriented at 0◦, then it radiates (A,B, C,D) as illustrated
in the figure on the right.

• If the tower is oriented at 90◦ (rotated clockwise from 0◦), then it
radiates (D,A,B, C).

• If the tower is oriented at 180◦, then it radiates (C,D,A,B).

• If the tower is oriented at 270◦, then it radiates (B, C,D,A).

An interesting phenomenon might occur on the ith tower when there is a jth tower such that the following
conditions are satisfied.

(1) Xi 6= Xj ,

(2) Yi 6= Yj , and

(3) their Euclidean distance is no larger than R.

The interesting phenomenon is as follow. Let p be the particle that is radiated by the ith tower on the quadrant
where the jth tower is located, and q be the particle that is radiated by the jth tower on the quadrant where
the ith tower is located. For simplicity, let’s say 〈p, q〉 are the particles radiated by their facing sides.

• If their facing sides are radiating either 〈A, C〉, 〈C,A〉, 〈B,D〉, or 〈D,B〉, then the ith tower will generate
an interaction energy of G.

• If their facing sides are radiating the same particles, 〈A,A〉, 〈B,B〉, 〈C, C〉, or 〈D,D〉, then the ith tower
will generate an interaction energy of −G; in other words, it consumes G energy.

• If their facing sides are radiating any one of the remaining 8 possible combination of particles that are
not mentioned above, then the ith tower is not interacting with the jth tower. In other words, there is
no energy generated from this pair of towers.

This phenomenon applies both ways (from each tower’s perspective) and stacks indefinitely if there are
multiple towers satisfying the conditions.

The 2021 ICPC Asia Jakarta Regional Contest Problem C. Energy Generation

Here are some examples of the energy generated from a pair of towers.

Each tower also passively generates its own energy. Initially, each tower generates P energy by itself.

You have the option to change the orientation of each tower by rotating it, possibly taking advantage of the
interesting phenomenon and increasing the total amount of energy generated. Each 90◦ rotation in any
direction (either CW/clockwise or CCW/counterclockwise) causes the tower to produce P less energy
passively. A tower that is rotated 90◦ in any direction will produce 0 energy passively and a tower that is
rotated 180◦ (rotated 90◦ twice in the same direction) will produce −P energy (or in other words, consume
P energy). Note that you can only rotate any tower by a multiple of 90◦.

Your task in this problem is to find the maximum amount of total energy that can be generated by changing
the orientation of zero or more towers in any way. The total energy generated in a configuration is the sum of
energy generated by each tower either passively or due to interaction with another tower in the configuration.

Input

Input begins with a line containing 4 integers N R G P (1 ≤ N ≤ 50; 1 ≤ R,G, P ≤ 1000) representing
the number of towers, the radius of effect of all towers, the tower interaction energy constant, and the initial
energy passively generated by each tower, respectively. The following N lines contain 3 integers Xi Yi Oi

(−1000 ≤ Xi, Yi ≤ 1000; Oi ∈ {0, 90, 180, 270}) representing the position and the initial orientation of the ith

tower. It is guaranteed that no two towers have the same position.

Output

Output contains an integer in a line representing the maximum amount of total energy that can be generated
out of all possible configurations of the towers.

Sample Input #1

3 10 10 15

0 0 0

2 2 180

100 100 180

Sample Output #1

35

The 2021 ICPC Asia Jakarta Regional Contest Problem C. Energy Generation

Explanation for the sample input/output #1

The maximum amount of total generated energy can be obtained by rotating the 2nd tower for 180◦. No
interesting phenomenon can happen on the 3th tower as its Euclidean distance to any other towers is larger
than R. By not rotating the 3th tower, it generates 15 passive energy. Rotating the 2nd tower for 180◦ will
cause it to be oriented at 0◦. An interesting phenomenon occurs on the 1st tower and the 2nd tower as they
satisfy all the conditions and their facing side radiates 〈A, C〉 (or 〈C,A〉 from the 2nd tower’s perspective).
The 1st tower will produce 15 + 10 = 25 from its passive energy generation and interaction with the 2nd

tower, while the 2nd tower will produce −15 + 10 = −5 energy. These 3 towers generate a total energy of
25− 5 + 15 = 35 in this configuration.

Sample Input #2

3 10 1 1000

0 0 0

2 2 0

-4 4 180

Sample Output #2

2998

Explanation for the sample input/output #2

The maximum amount of total generated energy can be obtained by not doing any rotation. These 3 towers
are interacting with each other at their current orientation. The 1st and 2nd towers each generates 1+(−1) = 0

interaction energy while the 3rd tower generates −1 + (−1) = −2 interaction energy. Each tower also
passively generates 1000 energy. The total energy generated in this configuration is 2998.

Sample Input #3

4 10 1000 1

0 0 0

0 2 90

2 0 180

2 2 270

Sample Output #3

4002

Explanation for the sample input/output #3

The maximum amount of total generated energy can be obtained by rotating the 1st tower for 90◦ CCW and
the 2nd tower for 90◦ CW. With these rotations, there are only interactions between the 1st and 4th towers,
and the 2nd and 3rd towers due to the interesting phenomenon. The 1st tower generates 0 + 1000 = 1000

energy, the 2nd tower generates 0 + 1000 = 1000 energy, the 3rd tower generates 1 + 1000 = 1001 energy,
and the 4th tower generates 1 + 1000 = 1001 energy. The total energy generated in this configuration is
4002.

The 2021 ICPC Asia Jakarta Regional Contest Problem C. Energy Generation

Problem D
Uniform Maker

The International Costumes and Props Company (ICPC) received an order from a client to produce N

pennants each containing the same word. However, due to some miscommunication between the account
manager and the client, not all the produced pennants have the same word although all of them have a word
of the same length. Reproducing those pennants is very costly as the ICPC only uses a certain type of rare
fabric in their production.

Fortunately, the client didn’t specify the word that they want to be in the pennants. In fact, the client will be
satisfied if and only if all the pennants have the same word.

The ICPC has a special technique to change one character in a word into some other character. It is ex-
pensive, albeit not as expensive as reproducing a new pennant. Therefore, the ICPC has to minimize the
number of times they have to use such a technique. Your task in this problem is to help the ICPC to determine
the minimum total number of characters that need to be changed so that the client will be satisfied.

For example, let there be N = 6 pennants with the following words: calf, palm, book, icpc, ball,
and room. The total number of characters than need to be changed can be minimized if all the words are
changed into balm.

• calf→ 2 characters: b**m

• palm→ 1 characters: b***

• book→ 3 characters: *alm

• icpc→ 4 characters: balm

• ball→ 1 characters: ***m

• room→ 3 characters: bal*

The symbol * represents an unchanged character. There are a total of 14 characters that need to be changed
in this example.

Input

Input begins with a line containing two integers N M (2 ≤ N ≤ 100; 1 ≤M ≤ 100) representing the number
of pennants and the length of each word in the pennant, respectively. The nextN line each contains a string
Si (|Si| = M) representing the word on the ith pennant. Each string only contains lowercase alphabetical
characters.

Output

Output contains an integer in a line representing the minimum total number of characters that need to be
changed so that the client will be satisfied.

The 2021 ICPC Asia Jakarta Regional Contest Problem D. Uniform Maker

Sample Input #1

6 4

calf

palm

book

icpc

ball

room

Sample Output #1

14

Explanation for the sample input/output #1

This is the example from the problem description.

Sample Input #2

3 11

goodluckfor

icpcjakarta

contestants

Sample Output #2

19

Sample Input #3

5 14

helpiamtrapped

inanincfactory

forthreemonths

withoutfoodand

drinkandshower

Sample Output #3

49

The 2021 ICPC Asia Jakarta Regional Contest Problem D. Uniform Maker

Problem E
Concerto de Pandemic

There are N cities numbered from 1 to N . There is a bi-directional road connecting city i to city i + 1 for
1 ≤ i < N and city N to city 1. Each road takes 1 day to travel.

Due to a pandemic situation, there are M cities that impose a quarantine order for any visitors to mitigate
the pandemic spread in those cities. Specifically, whenever someone visits city Ci, they will be quarantined
for a duration of exactly Ti days in a government-provided facility in that city. The order applies to any visitor
including those who don’t intend to stay in that city, e.g., only transiting.

Nawan is a rising young musician who already has K die-hard fans. The ith fan lives in city Di, and sur-
prisingly enough, none of the fans live in a city that imposes a quarantine order for visitors. Nawan has
just released an album and now he wants to hold concerts for his die-hard fans. Despite rejections from his
team, Nawan insists that the concert must be held live and in person; he believes that he wouldn’t be able
to convey his “musical feeling” to his fans through a virtual concert.

After considering the budget and their resource, Nawan and his team agree to hold at most P concerts.
Moreover, These concerts can only be held in cities that are not imposing any quarantine order for visitors.
Nawan has contacted all of his fans and each of them agrees to attend only 1 concert. The only remaining
issue is in choosing the cities where Nawan should have a concert.

Each of the fans will attend a concert in which the venue requires the minimum travel time from their city.
Each concert venue has no maximum capacity. Nawan wishes to hold the concerts in at most P cities such
that the longest travel time among all of his fans is as minimum as possible. Since Nawan needs to practice
and prepare for the concerts, he asked you to choose the cities in which he should have a concert such that
the longest required travel time by any fan is as minimum as possible; you only need to output the minimum
longest travel time.

For example, let N = 10, M = 4, C1..4 = {1, 4, 6, 7}, T1..4 = {2, 4, 2, 5}, K = 3, D1..3 = {2, 5, 8}, and P = 2.
In this example, the concert venues should be in city 5 and city 10 with a longest travel time of only 4 days.

• The 1st fan at city 2 will go to the concert at city 10, i.e. 2→ 1(quarantined for 2 days)→ 10, for a total
travel time of 4 days.

• The 2nd fan at city 5 will go to the concert at city 5 where no travel is needed.

• The 3rd fan at city 8 will go to the concert at city 10. i.e. 8→ 9→ 10, for a total travel time of 2 days.

Input

Input begins with a line containing four integers N M K P (1 ≤ M < N ≤ 200 000; 1 ≤ K,P ≤ N −M)
representing the number of cities, the number of cities that impose a quarantine order, the number of Nawan’s
die-hard fans, and themaximum number of concerts to be held, respectively. The nextM lines each contains
two integers Ci Ti (1 ≤ Ci ≤ N ; 1 ≤ Ti ≤ 200 000) representing the city that has a quarantine order and its
quarantine duration, respectively. It is guaranteed that all Ci are unique. The last line contains K integers

The 2021 ICPC Asia Jakarta Regional Contest Problem E. Concerto de Pandemic

Di (1 ≤ Di ≤ N) representing the city in which the ith fan lives in. It is guaranteed that no fan lives in a city
that imposes a quarantine order for visitors, and all fans live in a different city.

Output

Output contains an integer in a line representing the minimum longest travel time needed by any fan to reach
a concert venue.

Sample Input #1

10 4 3 2

1 2

4 4

6 2

7 5

2 5 8

Sample Output #1

4

Explanation for the sample input/output #1

This is the example from the problem description.

Sample Input #2

8 1 3 5

1 5

4 2 7

Sample Output #2

0

Explanation for the sample input/output #2

Nawan can hold a private concert for each of his fans, i.e. the concert venues should be in cities 2, 4, and 7.

Sample Input #3

5 2 2 1

1 14

2 14

3 5

Sample Output #3

1

The 2021 ICPC Asia Jakarta Regional Contest Problem E. Concerto de Pandemic

Problem F
Not One

The greatest common divisor (GCD) of a set of positive integers S is defined as the largest positive integer
d such that d is a divisor for all elements in S, e.g., GCD(10) = 10, GCD(6, 9) = 3, GCD(20, 12, 16, 36) = 4.

In this problem, you are given a tree of N nodes where each node is numbered from 1 to N and has a
positive integer Ai assigned to it. Your task is to find the size of the largest subtree such that the GCD of the
weight of all nodes in that subtree is not 1, or output 0 if there is no such a subtree. A tree T ′ is a subtree
of T if and only if T ′ is connected and is a subset of T . The size of a subtree is the number of nodes in that
subtree.

For example, consider the following tree of N = 7 nodes where A1..7 = {10, 5, 8, 6, 10, 6, 4}.

1 2

3

4

5

6

7

In this example, there are 15 subtrees where the GCD of all its nodes’ weight is not 1, i.e. seven subtrees
of size 1, four subtrees of size 2, three subtrees of size 3, and one subtree of size 4 (the largest). The
largest subtree contains nodes 4, 5, 6, and 7, and the GCD of their weights is GCD(A4, A5, A6, A7) =

GCD(6, 10, 6, 4) = 2.

Input

Input begins with a line containing an integer N (2 ≤ N ≤ 100 000) representing the number of nodes in the
given tree. The next line contains N integers Ai (1 ≤ Ai ≤ 106) representing the weight of the ith node. The
next N − 1 line each contains two integers uj vj (1 ≤ uj < vj ≤ N) representing an edge connecting node
uj and node vj . It is guaranteed that the given tree is connected.

Output

Output contains an integer in a line representing the size of the largest subtree such that the GCD of all its
nodes’ weight is not 1. If there is no such a subtree, output 0 in a line.

The 2021 ICPC Asia Jakarta Regional Contest Problem F. Not One

Sample Input #1

7

10 5 8 6 10 6 4

1 2

2 3

2 4

4 5

4 6

4 7

Sample Output #1

4

Explanation for the sample input/output #1

This is the example from the problem statement.

Sample Input #2

4

1 1 1 1

1 2

2 3

3 4

Sample Output #2

0

Explanation for the sample input/output #2

There is no subtree where the GCD of all its nodes’ weight is not 1 in this case.

Sample Input #3

5

100 100 100 100 100

3 4

1 2

3 5

2 4

Sample Output #3

5

The 2021 ICPC Asia Jakarta Regional Contest Problem F. Not One

Problem G
Greedy Knapsack

Budi stumbled upon the classical 0-1 Knapsack Problem that he has learned from his class in university.
There are N items numbered from 1 to N . The ith item has a positive weight of Wi and a positive value of
Vi. The objective is to take zero or more items such that their total weight does not exceed M while their
total value is maximum.

It has been a while since the last time Budi works on this problem, and he couldn’t remember how to solve
it. So, Budi devises a greedy algorithm in an attempt to solve this problem. The algorithm goes like this.
Each item is processed one by one from the 1st item to the N th item in sequential order. If the ith item can
be taken such that the total weight does not exceed M , then you should take that item; otherwise, ignore it.
Output the total value of all taken items.

The greedy algorithm can be presented with the following pseudocode.

GreedyKnapsack(W[1..N], V[1..N], M):

total_value = 0

total_weight = 0

for i = 1 to N:

if total_weight + W[i] <= M:

total_weight = total_weight + W[i]

total_value = total_value + V[i]

return total_value

Of course, Budi realized that such a greedy algorithm might not produce the optimum solution, but at this
point, he doesn’t care. Budi noticed that the output of such a greedy algorithm is sensitive to M . So, he
decides to run the greedy algorithm with various M ranging from 1 to a given upper limit T and determines
what is the largest output that he can get.

Your task in this problem is to help Budi to determine the largest output that he can get from the greedy
algorithm by varying the input M from 1 to T .

For example, let N = 5, T = 10, W1..5 = {10, 1, 2, 3, 4}, and V1.5 = {1, 1, 1, 1, 1}. In this example, the largest
output that can be obtained is 3, e.g., with M = 6; the greedy algorithm will take the 2nd, 3rd, and 4th items
with a total weight of 1 + 2 + 3 = 6 and a total value of 1 + 1 + 1 = 3. Notice that if we set M = 10, then the
greedy algorithm will take only the 1st item with a total weight of 10 and a total value of 1.

Input

Input begins with a line containing two integers N T (1 ≤ N ≤ 100 000; 1 ≤ T ≤ 1010) representing the
number of items and the upper limit, respectively. The second line containsN integersWi (1 ≤Wi ≤ 100 000)
representing the weight of the ith item. The third line contains N integers Vi (1 ≤ Vi ≤ 100 000) representing
the value of the ith item.

The 2021 ICPC Asia Jakarta Regional Contest Problem G. Greedy Knapsack

Output

Output contains an integer in a line representing the largest output that can be obtained by the presented
greedy algorithm.

Sample Input #1

5 10

10 1 2 3 4

1 1 1 1 1

Sample Output #1

3

Explanation for the sample input/output #1

This is the example from the problem statement.

Sample Input #2

5 10000000000

10 1 2 3 4

30 2 15 7 11

Sample Output #2

65

Explanation for the sample input/output #2

You can set M to be large enough such that all items can be taken, i.e. M ≥ 20.

Sample Input #3

5 20

4 9 5 1 3

203 175 131 218 304

Sample Output #3

900

Explanation for the sample input/output #3

The largest output can be obtained with M = 17. The 1st, 2nd, 4th, and 5th will be taken with a total weight
of 4 + 9 + 1 + 3 = 17 and a total value of 203 + 175 + 218 + 304 = 900.

The 2021 ICPC Asia Jakarta Regional Contest Problem G. Greedy Knapsack

Problem H
Cell Game

Two brothers, Aldo and Bondan, are stuck in their home as their city is going into lockdown again due to
the worsening situation of the COVID-19 pandemic. They have finished their semester and are on holiday,
but what kind of holiday can you enjoy if you cannot get out of your house. However, boredom does spark
creativity. They created a new game during their boring holiday.

The game is played on a board of R rows and C columns where each cell contains zero or one token. Each
token is painted with one of the 26 colors that is represented by a character from ‘a’ to ‘z’. There is at least
one token on the board.

Two opposing players play alternatingly. In their turn, the player chooses one token and move it to a not
necessarily empty adjacent cell (i.e. in north, south, west, or east direction). A move is a good move if and
only if the player moves a token of color x to a cell that already contains a token of the same color x. The
objective of the game is to have as many good moves as possible. The player with strictly more good moves
wins the game. If both players have the same number of good moves, then it’s a tie and no one wins.

This game can be played indefinitely. However, Aldo and Bondan agree to play it for a total of 10100 moves
for both with Aldo having the first move.

Bondan thinks that this kind of game is boring, so he decides to play it lazily. Whenever it is Bondan’s turn,
he will choose the same token that has just been moved by Aldo in his last previous turn, and move that
token to an adjacent cell uniformly at random.

Despite that, Bondan doesn’t like to lose. Before the game starts, he might need to alter the board by
changing the board size or moving the tokens’ initial location such that there is exactly zero chance for Aldo
to win the game even though Bondan plays lazily. Specifically, the board can be extended from R × C into
R′ × C ′ where R′ ≥ R and C ′ ≥ C, and each token’s initial location can be moved to another cell while
ensuring that each cell contains at most one token. No token can be discarded and no new token can be
added to the board.

Your task in this problem is to find a new board setting such that there is zero chance for Aldo (the first
player) to win the game with a total of 10100 played moves although Bondan plays it lazily. The new board
setting should have a minimum total number of cells. If there is more than one solution, you only need to
output (any) one of them.

Input

Input begins with a line containing two integers R C (1 ≤ R,C ≤ 1000) representing the initial number of
rows and the number of columns in the board, respectively. It is guaranteed that there are at least 2 cells
on the board. Each of the next R lines contains C characters representing the initial board condition. The
character ‘.’ represents an empty cell while a character from the lowercase alphabets (‘a-z’) represents a
token with such a color. It is guaranteed that there is at least 1 token on the board.

The 2021 ICPC Asia Jakarta Regional Contest Problem H. Cell Game

Output

Output begins with a line containing two integers R′ C ′ representing the number of rows and the number
of columns in the new board, respectively. Each of the next R′ lines contains C ′ characters representing
the new board condition. The character ‘.’ represents an empty cell while a character from the lowercase
alphabets (‘a-z’) represents a token with such a color. The new board should guarantee a zero chance for
Aldo (the first player) to win the game with a total of 10100 played moves although Bondan plays it lazily. It
should have a minimum total number of cells and should have the same set of tokens as the initial board.

Sample Input #1

2 3

ab.

c.d

Sample Output #1

2 3

ab.

c.d

Explanation for the sample input/output #1

There are no two tokens with the same color, thus, it is not possible for any player to have a good move.
Aldo cannot win this game.

Sample Input #2

2 3

aa.

c.d

Sample Output #2

2 3

a.a

c.d

Sample Input #3

1 2

oo

Sample Output #3

1 3

o.o

The 2021 ICPC Asia Jakarta Regional Contest Problem H. Cell Game

Problem I
Stable Planetary System

Emma, a young astronomer, has just received an award from the International Cosmic and Planetary Com-
mittee (the ICPC) for her discovery of a new planetary system along with her novel method in recording the
planetary system.

The new planetary system consists of a single star with N planets orbiting it. All these planets are orbiting
on the same plane such that they can be drawn easily on a 2-dimensional surface. Moreover, each of these
planets has a perfectly circular orbit centered at the star. All planets revolve around the star in the same
counter-clockwise direction.

To simplify this problem, the star and each planet are represented by a point and their sizes are negligible.
The star is located at the origin.

Through her research, Emma managed to record the location of each planet along with their revolution pe-
riod (the time needed for a planet to complete one full orbit around the star). Specifically, Emma records
〈Ri, θi, Ti〉 for each planet where 〈Ri, θi〉 is its polar coordinate and Ti is its revolution period. A polar co-
ordinate 〈Ri, θi〉 means that its distance to the star is Ri and its angle from the polar axis (positive x-axis)
is θi. To have an integer input, the degree θi is multiplied by 1000, so the value is between 0 and 359 999

(inclusive) representing any degree between 0◦ and 359.999◦.

Emma records all these planets’ positions at the same time, i.e. at time t = 0. Observe that the position of
each planet may differ on t > 0 depends on their revolution period, e.g., a planet at 〈3, 180 000〉 at t = 0 with
a revolution period of 4 unit will be at 〈3, 270 000〉 when t = 1 and at 〈3, 315 000〉 when t = 1.5; at t = 4 (its
revolution period), this planet will complete its orbit and return to 〈3, 180 000〉.

Emma hypothesizes that a planetary system will be much more stable if the planets are not too close to
each other. As no analysis has been done on this new planetary system, Emma wants to know the minimum
distance among all pairs of planets in this new planetary system. To measure the distance, Emma simply
uses the Euclidean distance on a 2-dimensional plane.

The distance between two planets is defined as the closest distance that these two planets can ever achieve,
i.e. for any t ∈ [0,∞). Note that t can be a real number. For example, let there be two planets 〈3, 180 000, 4〉
and 〈4, 0, 2〉. The distance between these two planets at t = 0 is 7 unit; their positions are the opposite to
each other from the star, i.e. the first planet is at 180◦ while the second planet is at 0◦. When t = 2, the first
planet will travel half of its orbit and its position becomes 〈3, 0〉, at the opposite side from its position when
t = 0. On the other hand, the second planet will travel one complete orbit so that its position is the same
as in when t = 0, i.e. 〈4, 0〉. In this situation, their distance is 1 unit. This is the closest distance these two
planets will ever achieve, thus, the distance between these two planets is 1 unit.

Given the position at time t = 0 and the revolution period of each planet, your task is to determine the
minimum distance among all pairs of planets. If there exist two planets colliding (being at the same position)
for any t > 0, then simply output 0; such a planetary system is not stable.

The 2021 ICPC Asia Jakarta Regional Contest Problem I. Stable Planetary System

Input

Input begins with an integer N (2 ≤ N ≤ 200 000) representing the number of planets in the new planetary
system. The next N lines, each contains three integers Ri θi Ti (1 ≤ Ri, Ti ≤ 108; 0 ≤ θi < 360 000) repre-
senting the ith planet’s position in a polar coordinate 〈Ri, θi〉 at t = 0, and its revolution period, respectively.
The polar coordinate 〈Ri, θi〉 means that the planet’s distance to the star is Ri and its angle from the polar
axis is θi. It is guaranteed that there are no two planets with the same position at t = 0.

Output

Output contains a single real number representing the minimum distance among all pairs of planets as
defined in the problem description. If there exist two planets colliding at a certain time, then output 0. Your
answer will be accepted as long as its absolute or relative error does not exceed 10−6.

Sample Input #1
3

1 55555 4

3 180000 4

4 0 2

Sample Output #1
1

Explanation for the sample input/output #1
At t = 0, the planets’ positions are shown as in the
following figure.

The minimum distance can be obtained from the pair
of the 2nd and 3rd planet at time t = 2. The following
figure shows the planets’ positions at t = 2.

Sample Input #2
3

100 0 2

100 270000 1

9 2000 3

Sample Output #2
0

Explanation for the sample input/output #2
The 1st and 2nd planet will collide at t = 0.5, i.e. when
both are at 〈100, 90000〉.

Sample Input #3
2

10 0 2

1 90000 2

Sample Output #3
10.0498756211

Explanation for the sample input/output #2
The distance between the 1st and 2nd planet will al-
ways be the same all the time.

The 2021 ICPC Asia Jakarta Regional Contest Problem I. Stable Planetary System

Problem J
Feeder Robot

Vincent switches his retirement plan from raising horses and goats into raising chickens. He procures N

chickens and lays each of them into their own coop (hen house). The coops are placed on a single line
numbered sequentially from 1 at the left-most to N at the right-most.

To make his retirement blissful (or at least he thought), Vincent buys a feeder robot. This feeder robot is to
be loaded with M pellets and it will distribute them for the chickens to feed on. The feeder robot will move
from one coop to an adjacent coop and distribute 1 pellet to each coop it visits. If a coop is visited x times
by the robot including the robot’s initial position, then it will get x pellets.

However, Vincent has just noticed that he cannot control how the robot moves. Let the robot be in front of
coop p. If the robot still has pellets to distribute, it will move to an adjacent coop (coop p − 1 or p + 1) at
random and distributes 1 pellet to that coop. This process repeats until the robot has no more pellets to
distribute. Note that if p = 1, then the robot will move to coop 2; similarly, if p = N , then the robot will move
to coop N − 1.

Since Vincent dislikes you even though you are his only friend, he challenges you to a problem. The chal-
lenge is to count how many possible pellets distributions are there if the robot starts at coop A. A pellets
distribution is defined as a tuple 〈R,S1..N 〉 where R is the final position of the robot and Si is the number of
pellets coop i gets. Two distributions are different if and only if the final position of the robot differs or there
is a coop that gets a different number of pellets. The robot’s movement or the order when the coop gets a
pellet does not matter.

Since the output can be quite big, Vincent requires you to give him the non-negative remainder when the
output is divided by 998 244 353. Believing that you cannot solve it, Vincent agrees to award you with a hefty
reward if you managed to solve his challenge.

For example, let N = 4, M = 3, and A = 2. In this example, there are 3 different pellets distributions.

• 〈2, {1, 2, 0, 0}〉: The robot ends at coop 2 and the number of pellets each coop gets is {1, 2, 0, 0}. The
robot’s movement that causes this distribution is: The robot starts at coop 2 and distributes 1 pellet to
coop 2; it moves to coop 1 and distributes 1 pellet to coop 1; it moves to coop 2 and distributes 1 pellet
to coop 2. In a simple notation, the robot’s movement is 2→ 1→ 2.

• 〈2, {0, 2, 1, 0}〉: The robot ends at coop 2 and the number of pellets each coop gets is {0, 2, 1, 0}. The
robot’s movement is 2→ 3→ 2.

• 〈4, {0, 1, 1, 1}〉: The robot ends at coop 4 and the number of pellets each coop gets is {0, 1, 1, 1}. The
robot’s movement is 2→ 3→ 4.

Input

Input contains three integers N M A (2 ≤ N ≤ 100 000; 1 ≤ M ≤ 200 000; 1 ≤ A ≤ N) representing the
number of coops, the number of pellets, and the starting position of the feeder robot, respectively.

The 2021 ICPC Asia Jakarta Regional Contest Problem J. Feeder Robot

Output

Output contains an integer in a line representing the non-negative remainder when the number of different
pellets distributions is divided by 998 244 353.

Sample Input #1

4 3 2

Sample Output #1

3

Explanation for the sample input/output #1

This is the example from the problem statement.

Sample Input #2

3 5 2

Sample Output #2

3

Explanation for the sample input/output #2

There are 3 different pellets distributions in this case.

• 〈2, {2, 3, 0}〉: The robot ends at coop 2 and the number of pellets each coop gets is {2, 3, 0}. The
robot’s movement is 2→ 1→ 2→ 1→ 2.

• 〈2, {0, 3, 2}〉: The robot ends at coop 2 and the number of pellets each coop gets is {0, 3, 2}. The
robot’s movement is 2→ 3→ 2→ 3→ 2.

• 〈2, {1, 3, 1}〉: The robot ends at coop 2 and the number of pellets each coop gets is {1, 3, 1}. The robot’s
movement is 2→ 1→ 2→ 3→ 2 or 2→ 3→ 2→ 1→ 2; both of them give the same distribution, i.e.
the robot ends at the same coop and each coop gets the same number of pellets in both distributions.

Sample Input #3

3 6 2

Sample Output #3

6

Explanation for the sample input/output #3

There are 6 different pellets distributions in this case: 〈1, {3, 3, 0}〉, 〈1, {2, 3, 1}〉, 〈3, {2, 3, 1}〉, 〈1, {1, 3, 2}〉,
〈3, {1, 3, 2}〉, and 〈3, {0, 3, 3}〉.

The 2021 ICPC Asia Jakarta Regional Contest Problem J. Feeder Robot

Problem K
White-Black Tree

TheWhite-Black Tree is a game played by two players on a rooted tree ofN nodes. The nodes are numbered
from 1 to N and node 1 is the root. Each node in the tree has a color Ci of either 0 (representing black) or 1
(representing white) that can be changed according to the rule of the game.

Two opposing players play alternatingly. In their turn, the player chooses a white node in the tree; let the
chosen node be x. First, the color of node x (Cx) is changed from white to black. Then, in the same turn,
the player is allowed to change the color of zero or more nodes that are a descendant of node x from white
to black or black to white. A node y is a descendant of a node x if and only if the parent of node y is either
node x or a descendant of node x. The player who cannot make any move loses and the opposing player
wins the game.

Your task in this problem is to determine who will win the game assuming both players play optimally; it
means that if there exists a move that guarantees their win, then they will surely play that move.

For example, consider the following game with a rooted tree of N = 7 nodes and let the initial colors be
C1..7 = {0, 1, 1, 0, 0, 0, 1}.

1

32 4

65 7

There are three white nodes (node 2, 3, and 7) in which the first player can choose for their first move. In this
example, there is a strategy for the first player to win the game. One of the optimal plays for the first player is
to choose node 3, change C3 into 0 (black), and then change the color of node 6 and node 7 (both are node
3’s descendant), i.e. C6 becomes 1 (white) and C7 becomes 0 (black). When it’s the second player’s turn,
there are only two white nodes to choose from (node 2 and 6) and both of them do not have any descendants.
No matter what the second player chooses for their turn, the first player will simply choose the remaining
one white node so that the second player will not be able to make any move. Therefore, the second player
loses and the first player wins this example game.

Input

Input begins with a line containing an integer N (2 ≤ N ≤ 100 000) representing the number of nodes in the
given tree. The second line contains N − 1 integers Pi (1 ≤ Pi < i) for i = 2..N representing the parent of
node i. The third line contains N integers Ci (Ci ∈ {0, 1}) representing the initial color of node i. The color
black is represented by the integer 0 while the color white is represented by the integer 1.

The 2021 ICPC Asia Jakarta Regional Contest Problem K. White-Black Tree

Output

Output a string “First” in a line if the first player will win the game assuming both players play the game
optimally. Otherwise, output a string “Second” in a line.

Sample Input #1

7

1 1 1 3 3 3

0 1 1 0 0 0 1

Sample Output #1

First

Explanation for the sample input/output #1

This is the example from the problem description.

Sample Input #2

5

1 1 2 3

0 1 1 0 0

Sample Output #2

Second

Explanation for the sample input/output #2

The black root has two white children with the same subtree structure and colors. Whatever move the first
player makes on one child, the second player simply mimics them on the other child.

Sample Input #3

4

1 1 1

1 1 0 1

Sample Output #3

First

Explanation for the sample input/output #3

The first player can make all nodes to be black in one move by choosing node 1.

The 2021 ICPC Asia Jakarta Regional Contest Problem K. White-Black Tree

Problem L
Happy Travelling

A holiday is coming and Sam plans to visit his parents. There are N cities numbered from 1 to N . Sam lives
in a campus dormitory in city 1 while his parents live in city N .

Sam already did some research on the cities. He assigns an integer Hi to each city i representing the
“happiness value” he will get if he visits city i, including city 1 and city N .

As for the transportation, he found out that for every city 1 ≤ i < N , there is a one-way bus that starts at city
i and stops at each city from city i+1 until city i+ Ti; in other words, the bus will stop at each of the next Ti

cities. It is guaranteed that i + Ti ≤ N . When Sam is at city i < N , he will board a bus that starts at city i

and alight at city j where j ∈ (i+ 1, i+ Ti) while skipping all the stops between city i and city j (exclusive).
Note that Sam cannot board a bus that does not start at city i if he is at city i.

Sam likes to be happy but he doesn’t like being on a bus for a long time (he gets bored easily). Specifically,
if he boards a bus that starts at city i and alights at city j (where i < j), then his happiness value will be
decreased by the following. ⌊

j − i

K

⌋
×D

Sam is busy preparing souvenirs for his parents and figuring out what to do when he gets there. So he needs
your help computing the total maximum happiness value that he can get by carefully planning his journey
from city 1 to city N .

For example, let N = 6, K = 2, D = 1, H1..6 = {8,−7,−8, 9, 0, 2}, and T1..5 = {5, 3, 3, 2, 1}. The maximum
total happines value that can be obtained from this example is 18 as shown in the following plan.

• Sam starts at city 1. He obtains a happiness value of H1 = 8 at city 1.

• At city 1, Sam boards the bus that can stop at any city in [2, 6] and alights at city 4. His happiness value
is decreased by

⌊
4−1
2

⌋
× 1 = 1 due to this bus trip. He obtains a happiness value of H4 = 9 at city 4.

• At city 4, Sam boards the bus that can stop at any city in [5, 6] and alights at city 5. His happiness value
is decreased by

⌊
5−4
2

⌋
× 1 = 0 due to this bus trip. He obtains a happiness value of H5 = 0 at city 5.

• At city 5, Sam boards the bus that can stop at any city in [6, 6] and alights at city 6. His happiness value
is decreased by

⌊
6−5
2

⌋
× 1 = 0 due to this bus trip. He obtains a happiness value of H6 = 2 at city 6.

In this plan, Sam boards a bus 3 times with the total happiness value of 8+(−1+9)+ (0+0)+ (0+2) = 18.
No other plan has a better total happiness value than this in this example.

Input

Input begins with a line containing three integers N K D (2 ≤ N ≤ 100 000; 1 ≤ K ≤ N ; 0 ≤ D ≤
10 000) representing the number of cities, and the parameterK andD as defined in the problem description,
respectively. The second line contains N integers Hi (−10 000 ≤ Hi ≤ 10 000) representing the happiness

The 2021 ICPC Asia Jakarta Regional Contest Problem L. Happy Travelling

value Sam will get if he visits city i. The third line containsN−1 integers Ti (1 ≤ Ti; i+Ti ≤ N) for 1 ≤ i < N

representing the number of next contiguous cities in which the bus that starts at city i will stop at.

Output

Output contains an integer in a line representing the maximum total happiness value that can be obtained.

Sample Input #1

6 2 1

8 -7 -8 9 0 2

5 3 3 2 1

Sample Output #1

18

Explanation for the sample input/output #1

This is the example from the problem description.

Sample Input #2

8 8 8

10 -5 -5 -5 -5 -5 -5 10

5 2 5 3 2 1 1

Sample Output #2

15

Explanation for the sample input/output #2

At city 1, Sam boards the bus that can stop at any city in [2, 6] and alights at city 3. At city 3, Sam boards
the bus that can stop at any city in [4, 8] and alights at city 8. The total happiness value of this plan is
10 + (

⌊
3−1
8

⌋
× 8− 5) + (

⌊
8−3
8

⌋
× 8 + 10) = 8 + (0− 5) + (0 + 10) = 15.

Sample Input #3

13 2 2

-5 -4 -4 -1 7 -6 -5 -4 -3 -2 -1 5 -7

3 10 9 8 7 6 5 4 3 2 1 1

Sample Output #3

-9

The 2021 ICPC Asia Jakarta Regional Contest Problem L. Happy Travelling

Problem M
Maxdifficent Group

Given an array of integers A1..N where N ≥ 2. Each element in A should be assigned into a group while
satisfying the following rules.

• Each element belongs to exactly one group.

• If Ai and Aj where i < j belongs to the same group, then Ak where i ≤ k ≤ j also belongs to the
same group as Ai and Aj .

• There is at least one pair of elements that belong to a different group.

Let Gi denotes the group ID of element Ai. The cost of a group is equal to the sum of all elements in A that
belong to that group.

cost(x) =
∑

i s.t. Gi=x

Ai

Two different group IDs, Gi and Gj (where Gi 6= Gj), are adjacent if and only if Gk is either Gi or Gj for
every i ≤ k ≤ j. Finally, the diff() value of two group IDs x and y is defined as the absolute difference
between cost(x) and cost(y).

diff(x, y) = |cost(x)− cost(y)|

Your task in this problem is to find a group assignment such that the largest diff() value between any pair of
adjacent group IDs is maximized; you only need to output the largest diff() value.

For example, let A1..4 = {100,−30,−20, 70}. There are 8 ways to assign each element in A into a group in
this example; some of them are shown as follows.

• G1..4 = {1, 2, 3, 4}. There are 3 pairs of group IDs that are adjacent and their diff() values are:

· diff(1, 2) = |cost(1)− cost(2)| = |(100)− (−30)| = 130,
· diff(2, 3) = |cost(2)− cost(3)| = |(−30)− (−20)| = 10, and
· diff(3, 4) = |cost(3)− cost(4)| = |(−20)− (70)| = 90.

The largest diff() value in this group assignment is 130.

• G1..4 = {1, 2, 2, 3}. There are 2 pairs of group IDs that are adjacent and their diff() values are:

· diff(1, 2) = |cost(1)− cost(2)| = |(100)− (−30 + (−20))| = 150, and
· diff(2, 3) = |cost(2)− cost(3)| = |(−30 + (−20))− (−20)| = 70.

The largest diff() value in this group assignment is 150.

The other 6 group assignments are: G1..4 = {1, 1, 1, 2}, G1..4 = {1, 1, 2, 2}, G1..4 = {1, 2, 2, 2}, G1..4 =

{1, 1, 2, 2},G1..4 = {1, 1, 2, 3}, andG1..4 = {1, 2, 3, 3}. Among all possible group assignments in this example,
the maximum largest diff() that can be obtained is 150 from the group assignment G1..4 = {1, 2, 2, 3}.

The 2021 ICPC Asia Jakarta Regional Contest Problem M. Maxdifficent Group

Input

Input begins with a line containing an integer N (2 ≤ N ≤ 100 000) representing the number of elements in
array A. The next line contains N integers Ai (−106 ≤ Ai ≤ 106) representing the array A.

Output

Output contains an integer in a line representing the maximum possible largest diff() that can be obtained
from a group assignment.

Sample Input #1

4

100 -30 -20 50

Sample Output #1

150

Explanation for the sample input/output #1

This is the example from the problem statement.

Sample Input #2

5

12 7 4 32 9

Sample Output #2

46

Explanation for the sample input/output #2

The maximum possible largest diff() of 45 can be obtained from the group assignment G1..5 = {1, 1, 1, 1, 2}.
The diff() value of the only adjacent group IDs is: diff(1, 2) = 45.

Sample Input #3

6

-5 10 -5 45 -20 15

Sample Output #3

70

Explanation for the sample input/output #3

Themaximumpossible largest diff() of 70 can be obtained from the group assignmentG1..6 = {1, 2, 2, 2, 3, 4}.
The diff() values of any two adjacent group IDs are: diff(1, 2) = 55, diff(2, 3) = 70, and diff(3, 4) = 35.

The 2021 ICPC Asia Jakarta Regional Contest Problem M. Maxdifficent Group

